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Abstract ACh would slowly diffuse out. He expanded on this
observation and decided to electrically control delivery
of ACh through the glass pipettes, and thus iontophor-
esis was born in 1953 (2). Recognizing that fast and
controlled delivery of ACh could be used to search and
map end-plate regions on the neuromuscular region,
many researchers, including del Castillo and Katz, used
it to study the actions of ACh on synaptic sites (3—6).
The first studies using iontophoresis in the central
nervous system were made by Eccles and Curtis who
were interested in studying Renshaw cells and used the
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Iontophoresis allows for localized drug ejections di- first account of a multibarrel iontophoresis probe to
rectly into brain regions of interest driven by the locate and modulate cells (7—9).

application of current. Our lab has previously adapted Throughout the remainder of the 1950s and into the
a method to quantitatively monitor iontophoretic ejec- 1970s, iontophoresis grew in popularity, and important
tions. Here thOS? principles have been applied in vivo to contributions concerning the advantages and disadvan-
modulate electrically evoked release of dopamine in tages of iontophoretic drug delivery were made (10— 19).
anesthetized rats. A neutral, electroactive marker mole- The technique was (and is) favored for studying receptor
cule that is ejected purely by electroosmotic flow (EOF) dynamics in vivo because drugs can be quickly, selec-
was used to monitor indirectly the ejection of electro- tively, and locally delivered to the site (or sites) of action.
inact'ive dppaminergic drugs (raclopride, quinpirole, apd Traditional methods of pharmacological intervention,
normfensme). Electrode placements were marked with such as intraperitoneal or intravenous delivery, affect
an iontophoretically ejected dye, pontamine sky blue. the entire brain and can confound interpretation of the
We show that EOF marker molecules, acetaminophen measured results. Furthermore, only drugs that can pass
(AP) and 2-(4-nitrophenoxy) ethanol (NPE), have no the blood—brain barrier can be used for systemic drug
effect on electrically evoked dopamine release in the delivery, and even then, metabolism of the drug may
striatum or the sensitivity of electrode. Additionally, reduce its effects (15). Iontophoresis circumvents all of
we establish that a short, 30 s ejection of raclopride, these problems, making it very attractive for pharma-
quinpirole, or nomifensine with iontophoresis is suffi- cological neurobiology studies.

cient to affect autoreceptor regulation and the reuptake However, despite the clear advantages of iontophor-
of dopamine. These effects vary in lifetime, indicating esis, challenges with reproducibility and quantitation of
that this technique can be used to study receptor kinetics. drug delivery have prevented the technique from being

more widely used (3, 11, 13, 15, 18—23). A major draw-
back of iontophoresis as it has been previously used is
that there is no way to differentiate between an unre-
sponsive site and a faulty drug ejection. Recently, we
modified the design of Millar and co-workers, coupling
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ontophoresis was first developed by W. L. Nastuk, iontophoresis barrels to carbon-fiber microelectrodes to
a student OfA- L. Hodgkin, th’ was interested in allow the concentrations of electroactive compounds
how the actions of acetylcholine (ACh) on the delivered by iontophoresis to be monitored with fast-scan

neuromuscular junction were altered with changes in
the ionic composition of the extracellular bath solu-
tion (/). His previous studies with intracellular pipet Received Date: June 2, 2010
recordings led him to the discovery that if pipets were Accepted Date: July 13, 2010
pulled to a coarse tip and then filled with ACh, some Published on Web Date: July 28, 2010
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cyclic voltammetry (22). While characterizing ionto-
phoretic delivery, we found that electroosmosis contri-
butes significantly to the observed drug delivery. Electro-
osmosis is due to ionizable silanol groups on the glass
capillary surface, which attract cations in solution to
form an electrical double layer. When a positive current
is applied to the capillary, the cations along the wall
migrate toward the anode (outside of the capillary),
creating a bulk movement of solution, termed electro-
osmotic flow (EOF). Thus, iontophoretic delivery is
governed by the traditional mechanism attributed to
iontophoresis, ion migration, and EOF. In addition, we
showed that an electroactive neutral molecule could
serve as an internal standard to monitor the variability
in the amount of drug delivered from different barrels.
These insights into the iontophoresis technique enable
quantitative delivery of electroactive and electroinactive
drugs by monitoring the ejection of an electroactive EOF
marker (24).

Although fast-scan cyclic voltammetry has been pre-
viously combined with iontophoresis for neurophysiol-
ogy experiments, it has not been used to modulate
presynaptic release of neurotransmitters (25—37). In
this paper, we demonstrate the use of quantitative
iontophoresis for the modulation of dopamine release
in the striatum of anesthetized rats. We characterize
ejections in vivo with particular emphasis on leakage
and the time course of drug ejection. We also have
tested the effects on dopamine release upon applica-
tion of two electroactive marker molecules, AP and
NPE, to ensure that our method of quantitation does
not alter the biological system. Expanding on our
previous work, we have quantified the relative mobi-
lities of drugs of pharmacological interest that are not
electroactive. Finally, we demonstrate that dopamine
neurotransmission can be locally modulated at termi-
nals by affecting D2 autoreceptors and the dopamine
transporter.

Results and Discussion

Characterization of Iontophoretic Delivery in Vivo

Traditionally, iontophoretic ejection of substances
with constant current has been considered as continuous
electrical migration of an ion out of the pipet tip
followed by diffusion into the surrounding environ-
ment (32). Theoretical and experimental calculations
predict that migration out of the pipet tip will be
influenced by the prior history of the pipet including
the magnitude of the retaining current applied and the
frequency of previous ejections (/8, 19). Our previous
work showed that the iontophoretic barrels that we
construct have sufficiently small leakage that it is im-
measurable by the adjacent carbon-fiber microele-
ctrode (24). However, we observe that the first few
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Figure 1. Temporal profile of consecutive iontophoretic ejections.
(A) Current vs time trace for the first three ejections of AP in the rat
brain. Ejection current was turned on at 7 = 0 s and off at 7 = 30s.
Ejection 1 shows a characteristic delay in rise time, consistent with a
“warm-up” period for ejections. Subsequent ejections, 2 and 3, have
less of a delay, and ejection 3 reaches steady state. (B) 10 consecutive
ejections into PBS buffer after “warm-up” period. [AP]/[AP]; repre-
sents the amount of AP measured at steady state compared with the
amount measured from the first ejection after the “warm-up” period.

10

ejections have diminished ejection efficiency, presum-
ably due to leakage during the time for implantation and
stabilization of the electrode (~1 h). This is shown in
Figure 1, where the local AP concentration was mon-
itored at the peak current of its oxidation during fast-
scan cyclic voltammetry as it was ejected into the
striatum of an anesthetized rat. The time course during
30 s ejections is shown in Figure 1A. The voltammetric
response increases when the iontophoretic current is
initiated. The response continues to increase as the
ejection continues and reaches a steady state. As shown,
the time to reach a steady state is longer for the first
ejection than the subsequent ones. This delay is the likely
cause of the “warm-up phenomenon” noted in previous
studies where initial iontophoretic ejections elicited little
to no biological response, but with subsequent ejections
the response grew in over time (/7). For this reason,
before beginning biological studies, we “warm up” the
electrode by continuously ejecting for 2—5 min into an
area of the brain that is not of interest. Figure 1B shows
the reproducibility of ejections after the “warm-up”
period. Ten consecutive ejections for a single barrel
show a similar steady-state level compared with the first
ejection after the warm-up period (n = 5). However, to
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Figure 2. Effect of AP on stimulated dopamine release. The top panels show current as a function of time while the lower panels are two-
dimensional color plots where current is shown in false color on the potential vs time axes. The white dashed lines on the color plots indicate the
voltages at which oxidation (lower lines) and reduction (top lines) is occurring. (A) A representative baseline current trace and color plot for the
stimulated release of dopamine. The black dashed line (+ = 0) indicates time of stimulation. (B) Representation of iontophoretic ejection of
3 uM AP. The black dashed line (+ = 0) indicates the application of a positive current to the barrel. (C) Current trace and color plot for
stimulated release after ejection seen in panel B. The black dashed line (+ = 0) indicates time of stimulation. There is no change in the extra-
cellular concentrations of dopamine seen in panels A and C elicited with a stimulation indicated by the black dashed line and 7 = 0 for each trace.

take advantage of the finely controlled drug delivery
enabled by iontophoresis, we are interested in monitor-
ing the biological effects of a single 30 s ejection and thus
may not always reach this steady state at the site of
interest, as will be evident later.

For a substance monitored by cyclic voltammetry
with the carbon fiber, the amplitude of the voltammetric
current is expected to increase as the ejected substance
diffuses from the ejection point down the length of the
fiber and to remain constant once the diffusion distance
exceeds the electrode length. The concentration mea-
sured is actually the average concentration along the
length of the electrode determined by a gradient started
at the iontophoretic tip, where the concentration is close
to that in the barrel (10 mM). For example, an electrode
with a length of 30 um (as in Figure 1) reports a current
that is proportional to a uniform concentration of 3 uM
across the surface of the electrode once steady state is
reached. When the iontophoretic current is turned off, the
analyte quickly diffuses away from the electrode. Within
120 s, the iontophoresed substance can still be detected
voltammetrically, but it has diluted to a concentration
that is ~2% of its steady-state value during ejection.

Effects of EOF Marker on Stimulated Dopamine
Release

A common way to probe presynaptic factors that
regulate neurotransmitter release is to examine the
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effects of added pharmacological agents on electrically
evoked release (33—35). For example, the role of auto-
receptors can be probed by examining stimulations
before and after addition of receptor antagonists. How-
ever, before the iontophoretic method was used with
electrical stimulation to probe presynaptic events at
dopaminergic terminals, we had to ensure that delivery
of the neutral marker substances did not affect dopa-
mine release. In these experiments, AP or NPE was
delivered for 30 s, followed by a wait-period of 120 s
before electrical stimulation of the medial forebrain
bundle (MFB). Figure 2 shows the results of a typical
experiment in a urethane anesthetized rat. A carbon-
fiber/iontophoresis probe was lowered into the striatum
and a stimulating electrode was lowered into the MFB.
Stimulated release (60 Hz, 40 pulses) was evoked every
120 s until 10 consecutive maximal stimulations showed
a similar maximal concentration (typically requiring 15
stimulations). A representative baseline trace and color
plot are shown in Figure 2A. To test the effects of the
EOF marker on dopamine release, AP was iontophor-
etically applied for 30 s at a location that exhibited
reproducible stimulated release. The amount of AP
delivered was monitored electrochemically, and the
concentration versus time trace and color plot are
shown in Figure 2B. Stimulation was repeated 120 s
after AP delivery, and the maximum amplitude of
released dopamine and its time course remained the
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Figure 3. Effect of saline on stimulated dopamine release. The top panels show current as a function of time, while the lower panels are two-
dimensional color plots where current is shown in false color on the potential vs time axes. The white dashed lines on the color plots in panels A
and C indicate the voltages at which oxidation (lower lines) and reduction (top lines) is occurring, whereas in panel B, the dashed white line
indicates the potential change observed due to the ejection of NaCl. (A) A representative baseline current trace and color plot for the stimulated
release of dopamine. The black dashed line (+ = 0) indicates time of stimulation. (B) Representation of iontophoretic ejection of saline with high
applied current. The black dashed line (r = 0) indicates the application of a positive current to the barrel. (C) Current trace and color plot for
stimulated release after ejection seen in panel B. The black dashed line (z = 0) indicates time of stimulation. There is no change in the
extracellular concentrations of dopamine seen in panels A and C elicited with a stimulation indicated by the black dashed line and 1 = 0 for each
trace.

same. From the concentration of AP during its ionto- constant current (80 nA) we are able to detect a change
phoresis, 3 uM, we can estimate the concentration at the in our background signal (~4 nA in this example) that
time of the stimulation to be 60 nM (2% of the steady- evolves with time (Figure 3). The current is an indirect
state level). Stimulations were continued at 2 min inter- effect of the iontophoresis and its time course indicates
vals for 30 min, and there was no significant change in that it reflects a change in the electrical double layer
the amount of dopamine released or rate of reuptake formed at the carbon-fiber electrode. While we cannot
(Figure 2C, n = 9, p > 0.01). The same experiment was quantify the amount of NaCl delivered from this signal,
performed for NPE, with no measurable difference it does serve to confirm that ejection occurred. Stimu-
observed from control (n = 4, p > 0.01). lated dopamine release was then measured 120 s after

the NaCl ejection was terminated to ensure that it did
not alter presynaptic release dynamics. The results from
this experiment indicate that stimulated dopamine re-
lease is unaffected by large ejections of NaCl and are
shown in Figure 3 (n = 4, p > 0.05). The NaCl ejected
with large currents does alter the double layer of the
carbon fiber, although this is not seen with the lower
ejection currents typically used.

Current Artifacts on Stimulated Dopamine Re-
lease

It is often noted in iontophoretic literature that
current artifacts can be seen neurophysiologically due
to the introduction of Na™ and CI~ that are in the drug
solution (73, 23). Although in our experiments we are
not monitoring cell firing and are instead monitoring
presynaptic release of dopamine, we wanted to ensure

that current artifacts were not affecting our measured Marking of Electrode Placement by Iontophoresis
results. For these experiments, just as in the previous set of a Dye

of experiments, we adjusted the position of the carbon When dealing with small brain structures, it is crucial
fiber/iontophoresis assembly so that it was in a location to know the location of the electrode. A common way to
in the striatum that showed robust dopamine release. verify electrode placement is to remove the brain after
After establishing reproducible stimulated release of the experiment is over for histology. For experiments
dopamine, we iontophoretically ejected NaCl (5 mM using carbon-fiber microelectrodes, one approach is to
in the barrel, made up in deionized water) for 30 s. electrolytically lesion the electrode. This has the short-

Although NaCl is not electroactive, by applying a large coming that the carbon fiber is destroyed during this
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Figure 4. Confirmation of electrode placement into the striatum
using iontophoresis of pontamine sky blue dye. After a 20 min
ejection, the spot is 600 um in diameter. Left side of the figure shows
region of interest labeled and circled with a dashed line. On the right,
the spot from the ejection of dye can be seen in the circled region of
interest. Adapted with permission from ref 45. Copyright 2007 Elsevier.

process and cannot be calibrated after the in vivo
experiment. An alternate approach is to remove the
electrode after the experiment for calibration and insert
a tungsten wire to electrically mark the location of the
previous electrode. lontophoresis barrels provide a
more convenient and precise method to mark electrode
placement. Figure 4 shows the marking of electrode
placement by delivering pontamine sky blue dye ionto-
phoretically for 20 min at 40 nA once the experiment
was over. The length of ejection was chosen to ensure
that a large enough spot was produced, given that
iontophoresis is such a localized drug delivery mechan-
ism. By using of one of the empty barrels to deliver a dye,
the electrode placement can be accurately determined,
while keeping the carbon fiber intact for postcalibration.
Many other dyes can be used, such as alcian blue, methyl
blue, fast green, and lucifer yellow, making the proce-
dure compatible with any other immunohistochemistry
that may be done postexperiment (23).

Quantitative Iontophoresis of Nonelectroactive
Drugs

In our previous work, relative iontophoretic mobili-
ties at capillary tips were obtained for electroactive
molecules by measuring the ejected amounts at the adja-
cent carbon-fiber microelectrode (24). We found that
neutral molecules such as AP can be ejected, establishing
a role for EOF. We also established the role of EOF by
demonstrating that iontophoretic and electrophoretic
mobilities measured via capillary electrophoresis are
correlated. Thus, at the tip of an iontophoresis pipet,
delivery is controlled by both the migration of ions in
an electric field and EOF. To obtain the iontopho-
retic mobility of electroinactive molecules such as the
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Figure 5. Chemical structures of compounds used for study. Shown
are compounds with their associated anions. At pH 5.8, raclopride,
nomifensine, quinpirole, and dopamine are all protonated based
upon their pK,’s obtained on Scifinder. All solutions were made up
as 10 mM in 5 mM NacCl to ensure adequate electroosmotic flow
and for buffering of the ionic strength.

N AT

dopaminergic drugs raclopride, quinpirole, and nomi-
fensine (structures shown in Figure 5), the electrophoretic
mobility through a capillary column was measured with
UV detection. Retention times were used to compute the
electrophoretic mobilities for dopamine, raclopride,
quinpirole, nomifensine (all monocations), AP (a neutral
molecule), and uric acid (a monoanion). The electro-
phoretic mobilities were then used to calculate the relative
iontophoretic mobilities as shown in Figure 6. Thus,
raclopride is ejected at a rate 1.68 times as fast as
AP, whereas quinpirole and nomifensine are ejected at
a rate 2.18 and 2.24 times as fast as AP, respectively.
With the knowledge of these ratios, the amount of an
electroinactive molecule that is ejected can be calcu-
lated by the measured coejection of a neutral electro-
active molecule from the same barrel. Note that the
relative mobilities are in agreement with the expected
charge (calculated from the relevant pK,’s) and the
size of the molecules.

With an average ejection and an electrode with a
length of 30 um, the average concentration of AP across
the carbon fiber is 3 uM for the example shown in
Figure 2. However, the concentration at the portion of
the carbon fiber closest to the iontophoresis tip is very
near that placed inside the barrel (10 mM). Such high
concentrations of drug could alter the sensitivity of the
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Figure 6. The electrophoretic mobilities of the electroactive com-
pounds uric acid, AP, and DA (B) are positively correlated to
previously reported iontophoretic rates. The linear regression from
this correlation was used to determined iontophoretic rates relative
to AP for raclopride (R), quinpirole (Q), and nomifensine (N) (O)
based on their electrophoretic mobilities calculated by capillary
electrophoresis.

electrode to dopamine. To evaluate this, we first cali-
brated a series of carbon-fiber iontophoresis probes to
determine their sensitivity to dopamine. We then loaded
one of the iontophoresis barrels with the EOF marker
(AP) or AP and a drug of interest. While monitoring the
response of AP with the carbon-fiber microelectrode, we
continuously ejected the mixture into buffer for 40 min
with a pump current sufficient to deliver approximately
10 uM of AP. After the 40 min ejection and monitoring
period, we calibrated the carbon-fiber electrodes’ sensi-
tivity to dopamine again and determined the ratio of the
electrodes’ post-iontophoresis sensitivity to pre-ionto-
phoresis sensitivity. The results from these experiments
are presented in Table 1. AP and NPE, which are both
neutral and can be used as EOF markers, did not
significantly alter the electrodes’ response to dopamine.
Pharmacological agents, such as nomifensine, quinpir-
ole, and raclopride, have slight effects on the electrodes’
response to dopamine. Note, however, that the ejection
times used during these iontophoresis experiments (40
min per ejection) were considerably longer than would
be used in most in vivo experiments (normally 30 s per
ejection). Given the small effect observed, even with these
prolonged iontophoresis conditions, the results demon-
strate that iontophoresis of these drugs during in vivo
experiments will not affect our dopamine measurements.

Modulation of Neurotransmitter Release Using
Quantitative Iontophoresis

Dopamine release from terminals in the striatum is
regulated by D2-autoreceptors (34). Quinpirole, a D2-
agonist, has been shown to decrease stimulated dopamine
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Table 1. Effect of lontophoresis on the Sensitivity of
Carbon-Fiber Microelectrodes for Dopamine Detec-
tion

solution ejected by post-ionto/pre-ionto sensitivity

iontophoresis (nA/nM)
AP 1.004+0.10
AP + NPE 1.01£0.07
AP + nomifensine 0.86+0.08
AP + quinpirole 0.914+0.08
AP + raclopride 0.87£0.07

release in slices (36), and we wanted to show in vivo
modulation with iontophoretic application of quinpirole.
For these experiments, we adjusted the position of the
carbon fiber/iontophoresis assembly so that it was in a
location in the striatum that showed robust dopamine
release (37). After establishing reproducible stimulated
release of dopamine, we iontophoretically ejected quin-
pirole and AP from the same barrel for 30 s. The local AP
concentration was monitored by fast-scan cyclic voltam-
metry. The stimulation was repeated 120 s after the
iontophoretic delivery terminated when AP had dimin-
ished to ~2% of its concentration during iontophoretic
application. From the AP concentration we can calculate
that the local quinpirole concentration at the time of the
stimulation was 88 nM. This value is near the ECs
(60 nM) for quinpirole measured in brain slices (38).
Consistent with autoreceptor regulation, dopamine
release was diminished (representative example in Figure 7).
This experiment was repeated in six different rats with a
different iontophoretic assembly in each animal. In
these experiments, the amount of current used for
ejection was adjusted so that the same amount of AP
(and thus quinpirole) was ejected in each animal. The
release amplitude was 63% =+ 5% (n = 6) of its predrug
value. The small error associated with these measure-
ments highlights the advantage of using an electroactive
marker, since it allows for adjustment to the applied
iontophoretic current so that uniform amounts of quin-
pirole are ejected. Thus, compensation can be made for
the variability inherent to each iontophoretic barrel.
Because autoreceptors and reuptake processes appear
to be linked, we also examined the clearance rates of
dopamine after stimulation. While a trend toward faster
reuptake rates was observed after quinpirole ejections,
there was not a statistically significant decrease in 7.
Stimulations were repeated at 2 min intervals, and the
amplitude returned to its original value within three to
five stimulations after the initial iontophoretic appli-
cation. In addition, when the electrode was lowered
400 um, release similar to that seen in the absence of
drug was observed. Since the amounts introduced by
iontophoresis are microscopic, it would not be expected
to exert an effect over a region much larger than that
immediately around the electrode. It is worth noting

DOI: 10.1021/cn100056r | ACS Chem. Neurosci. (2010), 1, 627-638
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Figure 7. Stimulated dopamine release in an anesthetized animal before and after a localized ejection of solution containing both AP and
quinpirole. The top panels show current as a function of time, while the lower panels are two-dimensional color plots where current is shown in
false color on the potential vs time axes. The white dashed lines on the color plots indicate the voltages at which oxidation (lower lines) and
reduction (top lines) is occurring. (A) A representative baseline current trace and color plot for the stimulated release of dopamine. The black
dashed line indicates the time of stimulation. (B) Representation of iontophoretic ejection of AP and quinpirole. The black dashed line ( = 0)
indicates the application of a positive current to the barrel. The measured signal is due solely to AP and is used to estimate the concentration of
quinpirole. Here, 2 uM AP is the average concentration across the electrode, and is equivalent to 4.4 uM quinpirole. (C) Current trace and color
plot for stimulated release 120 s after ejection seen in panel B. At the time of stimulation (black dashed line), the concentration of AP has
decreased to 2% of its original value, corresponding to a decrease in quinpirole concentration to 88 nM. The extracellular concentration of
dopamine seen in panel C is less than half the concentration initially seen in panel A. In both panels A and C the time of stimulation is indicated
by the black dashed line and # = 0 for each trace.

that most iontophoresis experiments done previously signaling process. Similarly, nomifensine delivery re-
used ejections much longer than 30 s, some delivering sulted in a 187% =+ 13% increase in stimulated dopa-
drug for tens of minutes (39). Such ejections seem mine release and an increased #, > from 0.63 = 0.03 s to
unnecessary in light of the results presented here. In- 1.36 4= 0.05 s (Figure 8). The modulations observed due
deed, the ability to make multiple ejections at the same to localized application of all three drugs is consistent
or different sites enables multiple concentrations of with those found for systemic injections (47).

drugs to be examined in a single animal. Systemic doses
do not allow this type of flexibility, clearly highlighting
one of the major advantages of iontophoresis.

Rapid Modulation of Dopamine Release and
Reuptake

One of the advantages of localized drug delivery is
Modulation of Other Dopaminergic Presynaptic that drug effects are observed quickly. Figure 9 demon-

Processes strates rapid modulation of dopamine release and re-

Similar experiments were done with raclopride, a D2- uptake by using a D2 agonist, D2 antagonist, and
receptor antagonist, which can block dopamine auto- dopamine reuptake blocker. Quinpirole, a D2 agonist,
receptor function, leading to an increase in release, as was delivered to attenuate dopamine release. As can be
well as nomifensine, a dopamine reuptake inhibitor that seen from Figure 9A, a decrease in release is observed
increases the amount of time required for dopamine to immediately after the 30 s ejection. In this representative
clear the synapse. The results from these experiments experiment, the signal slowly returned to baseline over
showed that raclopride increased stimulated dopamine 10 min. Raclopride, a D2 antagonist, which blocks
release to 270% =+ 40% (n = 5) of its predrug value. autoreceptors on dopamine terminals, quickly increased
Raclopride also caused a decrease in reuptake rate, as the amount of dopamine release observed by 3-fold. In
indicated by the increased ¢, from 0.63 £ 0.03 s to contrast to quinpirole, this effect remained steady for
0.96 £ 0.05 s. This result is consistent with previous over 10 min. To observe effects on dopamine reuptake,
work where systemic injections of a D2-antagonist we used the dopamine reuptake inhibitor nomifensine.
affected both release and reuptake (34, 40) and further As expected from previous findings, the reuptake
supports the idea that autoreceptor antagonists increase blocker increased the amount of dopamine release and
evoked DA levels by decreasing reuptake in a complex slowed reuptake. This can be seen in the color plots
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nomifensine
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(2.5 yM marker)
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Figure 8. Stimulated dopamine release in an anesthetized animal before and after a localized ejection of solution containing both AP and
nomifensine. The top panels show current as a function of time, while the lower panels are two-dimensional color plots where current is shown
in false color on the potential vs time axes. The white dashed lines on the color plots indicate the voltages at which oxidation (lower lines) and
reduction (top lines) is occurring. (A) A representative baseline current trace and color plot for the stimulated release of dopamine. The black
dashed line is the time to stimulation. (B) Representation of iontophoretic ejection of AP and nomifensine. The black dashed line (r = 0)
indicates the application of a positive current to the barrel. Note that the measured signal is due solely to AP and is used to estimate the
concentration of nomifensine. Here, 2.5 uM AP is the average concentration across the electrode and is equivalent to 5.6 M nomifensine.
(C) Current trace and color plot for stimulated release 120 s after ejection seen in panel B. At the time of stimulation (black dashed line), the
concentration of AP has decreased to 2% of its original value, corresponding to a decrease in nomifensine concentration to 112 nM. The
extracellular concentration of dopamine seen in panel C is significantly increased and the clearance time is also increased, indicating a change in
reuptake kinetics. In both panels A and C, the time of stimulation is indicated by the black dashed line and 7 = 0 for each trace.
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Figure 9. Rapid modulation of DA autoreceptors using quinpirole and raclopride and dopamine transporter using nomifensine. (A)
Stimulated release of DA is recorded every 120 s, and plotted is the maximum amount of dopamine overflow recorded from each stimulation.
The circles denote the time points at which the color plots in panel B were taken. With the application of quinpirole (Q), raclopride (R), and
nomifensine (N) at the time represented with the vertical dashed line, there was a change in DA signal seen at the next stimulation. (B) Color
plots for the stimulated release of dopamine before application of any drugs and after the administration of each drug. The duration of the
dopamine signal (white dashed line) after stimulation (black dashed line) is indicative of the reuptake kinetics.

shown at each point of modulation in Figure 9B. The addition to demonstrating that iontophoresis can be
dopamine signal apparent in the color plots has a longer used to quickly and robustly modulate dopamine release
duration once nomifensine is on board. This effect, and reuptake, it also gives insight into the different rates
however, is shorter lived than the raclopride effect, of unbinding for each of these drugs. The results show
and over the course of 10 min, the signal returns to that nomifensine has a shorter-lasting effect than quin-
what it was before nomifensine ejection. To see whether pirole and raclopride, consistent with studies that show
the raclopride and nomifensine effects could be re- nomifensine has the fastest off rate from its binding site
versed, quinpirole was reapplied, resulting in dopa- to striatal membranes (when adjusted for temperature)
mine release returning back to the original baseline. In (42—44).
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Conclusions

The results presented characterize and validate the
use of an electroactive EOF marker for quantitative
iontophoresis using carbon-fiber microelectrode assem-
blies. Nanomolar concentrations of raclopride, quinpir-
ole, and nomifensine can be delivered by monitoring the
coejection of the EOF marker. The effects of local
delivery of these drugs can then be monitored by
measuring electrically evoked dopamine release before
and after drug. We show that a short 30 s ejection is
sufficient to affect autoreceptor regulation and reuptake
of dopamine. Additionally, electrode placement can be
verified by iontophoresis of a dye, such as pontamine
sky blue. These experiments highlight the advantages of
iontophoresis: quick, local, and selective receptor modu-
lation. The use of carbon-fiber microelectrodes and an
EOF marker enables real-time measurements of drug
delivery, eliminating confounds from faulty ejections
and differences in doses. These modifications improve
the technique of iontophoresis for in vivo neuropharma-
cological experiments.

Methods

Chemicals

Unless noted, all chemicals were purchased from Sigma-
Aldrich (St. Louis, MO) and used as received. Chemical
structures of the species used are shown in Figure 5. Solutions
were prepared using deionized water. A physiological buffer
solution (15 mM TRIS, 126 mM NaCl, 2.5 mM KCl, 25 mM
NaHCO3;,2.4mM CaCl,, 1.2mM NaH,PO4, 1.2 mM MgCl,,
2.0 mM Na,SOy), pH 7.4, was used in all calibration experi-
ments.
Animals and Surgery

Male Sprague—Dawley rats (225—350 g; Charles River,
Wilmington, MA) were anesthetized with urethane (1.5 g/kg,
1.p.) and placed in a stereotaxic frame (Kopf, Tujunga, CA).
Holes were drilled in the skull on the right hemisphere for the
working and stimulating electrodes at coordinates selected
from the atlas of Paxinos and Watson (45). A Ag/AgCl
reference electrode was inserted in the left hemisphere. The
carbon-fiber iontophoresis probe was placed in the striatum
(AP +1.2 mm, ML +2.0 mm, and DV —4.5 to —6 mm). The
stimulating electrode was placed in the medial forebrain
bundle (AP —2.8 mm, ML +1.7 mm, and DV —8.5 mm).
The carbon-fiber and stimulating electrodes were individually
adjusted in the dorsal—ventral coordinate to locate the opti-
mal locations for stimulated dopamine release.
FElectrical Stimulation

An untwisted bipolar stimulating electrode (Plastics One,
Roanoke, VA) was used to stimulate dopaminergic neurons
using a pair of linear constant current stimulus isolators
(model NL80A, NeuroLog System, Digitimer Ltd., U.K.).
The stimulation train consisted of 40 biphasic pulses (300
UA, 2 ms/phase unless otherwise noted) applied at 60 Hz. The
pulses were generated by a computer and applied between the
cyclic voltammograms to avoid electrical interference.
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Iontophoresis Probes

A glass capillary (part no. 624503, 0.60 mm o.d., 0.4 mm
i.d., 4in. long, A-M Systems, Sequim, WA) was loaded with a
carbon fiber (T-650, Thornel, Amoco Corp., Greenville, SC)
that served as the working electrode. This capillary containing
the carbon fiber was then inserted into one barrel of a 4-barrel
capillary (part no. 50644, 1 mm o.d., 0.75 mm i.d., four barrel
GF pipettes, 4 in. long, Stoelting Co., Wood Dale IL). The
four barrel assembly contained glass filaments (GF) in each
barrel that aid in filling the barrel by capillary action. The
capillaries were bundled together with heat shrink and tapered
to a sharp tip using a micropipet puller (Narashige, Tokyo,
Japan) with a two-step pull process. The protruding carbon
fiber was cut to a length between 30 and 50 um by careful use
of a scalpel under a 10x microscope objective. The resulting
probe consists of a glass-encased carbon fiber that is 5—7 um
in diameter and three iontophoretic barrels each about 1 yumin
diameter. Before use, the barrel containing the carbon fiber
was backfilled with electrolyte (4 M potassium acetate, 150 mM
potassium chloride) and fitted with wires for electrical contact.
The remaining barrels for iontophoresis were filled with solu-
tions containing reagents to be ejected.

Electrochemical Data Acquisition and Presentation

Cyclic voltammograms were acquired using data-acquisi-
tion hardware and local software written in LabVIEW
(National Instruments, Austin, TX). The cyclic voltammetry
waveform was generated and the voltammetric signal was
acquired with a computer interface board, the PCI-6052E
(National Instruments). A PCI-6711E D/A board (National
Instruments) was used to synchronize waveform application
and data acquisition and to trigger the iontophoretic current
applied and the loop injector in the flow injection apparatus.
The voltammetric waveform was input into a custom-built
instrument for application to the electrochemical cell and
current transduction (University of North Carolina at Chapel
Hill, Department of Chemistry Electronics Facility). After
data collection, background subtraction, signal averaging,
and digital filtering (low-pass filtered at 2 kHz) were all done
under software control.

For all experiments, a triangular waveform was applied
with a scan rate of 400 V s~ ! with a rest potential of —0.4 V
versus a Ag/AgCl reference electrode between scans and a
linear scan to 1.3 V, followed by a scan back to the rest
potential. The scans were repeated every 100 ms, and collec-
tion was typically for 15—60 s. This large amount of data is
presented as a color plot, with the applied voltage plotted on
the ordinate, time on the abscissa, and measured current in
false color.

Iontophoresis Ejections

Characterization studies involving the effects of the neutral
marker molecule on stimulated dopamine release were done
with solutions made up at 10 mM concentrations of acetami-
nophen and 2-4(nitrophenoxy) ethanol in 5 mM NaCl. The
effects of saline were studied with 5 mM NacCl solutions. For
studies involving the modulation of stimulated dopamine
release, each barrel of the iontophoresis assembly was filled
with either raclopride tartrate salt, nomifensine maleate salt,
or quinpirole hydrochloride and the EOF marker, usually AP,
at concentrations of ~10 mM each in 5 mM NaCl at pH 5.8.
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These concentrations of drug and supporting electrolyte were
chosen for the following reasons: Electrolyte is needed to
facilitate conductivity and to ensure adequate and reproduci-
ble EOF without being so high that EOF is suppressed (46);
therefore S mM NaCl was chosen as a compromise between
the two limits. Traditionally, drug concentrations are higher
than used here and barrels are sometimes loaded with drugs at
concentrations of 250 mM. However, given that we are able to
electrochemically monitor drug ejection, we determined that
10 mM is sufficiently concentrated to get observable ejection
and observe effects on stimulated dopamine release. Ejection
currents were delivered by a constant current source designed
for iontophoresis (Neurophore, Harvard Apparatus, Hollis-
ton, MA). For each barrel, an ejection current (between 5 and
40 nA) was selected by evaluating ejections (30 s duration) that
gave a measurable voltammetric signal for the EOF marker
(average peak current of 5—30 nA at the peak potential in the
voltammogram). A current of 0 nA was applied between
ejections.

To minimize electrical cross-talk between the electroche-
mical and iontophoretic electrodes, both systems had a com-
mon ground. The reference electrode served as the return for
the iontophoresis currents and was tied to ground. The
potential of the working electrode was controlled by applying
the voltage to the noninverting input of the current transducer.
Calibrations

The response of the carbon fiber electrode in the ionto-
phoresis probe was calibrated in a flow injection analysis
system after in vivo use (47). The probe was positioned at the
outlet of a six-port rotary valve. A loop injector was mounted
on an actuator (Rheodyne model 7010 valve and 5701 ac-
tuator) that was used with a 12-V DC solenoid valve kit
(Rheodyne, Rohnert Park, CA) tointroduce the analyte to the
surface of the electrode. The linear flow velocity (1.0 cm s~ ")
was controlled with a syringe infusion pump (Harvard Appa-
ratus model 940, Holliston, MA). The voltammetric current
was measured at the peak potential for each analyte that was
evaluated at four concentrations.

Capillary Electrophoresis Experiments

A home-built CE system equipped with an absorbance
detector and a 30 kV power supply was employed. Absor-
bance traces were collected using a custom written LabVIEW
program (courtesy of Professor James Jorgensen, UNC-CH).
Separations were carried out in a 50 um diameter fused silica
capillary, 96.0 cm in total length, with the UV detector placed
87.5 cm from the inlet. Experiments were done in cationic
mode (the anode at the inlet and cathode at the outlet).
Samples were run at a concentration of 2 mM in 17 mM
PBS (phosphate-buffered saline, made up of 0.25% mono-
sodium phosphate and 0.04% disodium phosphate) with a pH
of 5.8 as in the iontophoresis experiments. UV detection was
measured at 195 and 240 nm and electrophoretic mobilities
were calculated as previously described (24).

Histology

After animal experiments were complete, pontamine sky
blue was loaded into one of the empty iontophoresis barrels to
mark electrode location. The dye was ejected by applying 40
nA of current for 20 min. The animals were euthanized, and
brains were removed from the skull and stored in 10%
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formaldehyde for at least 3 days. Brains were coronally
sectioned into 40—50 um thick slices with a cryostat and
visualized under a stereoscope equipped with a camera.
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